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OF THE EVAPORATION (STICKING) COEFFICIENT
AND INTERNAL FLOWS
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A new theory of diffusiophoresis of large volatile spherical aerosol droplets, which is a further development
of the previous investigations, has been formed. Account has been taken of the influence of the evaporation
coefficient α of the droplet liquid, the surface-tension coefficient variable along the droplet surface, and inter-
nal flows in the droplet on the diffusiophoresis velocity. The formulas obtained enable one to directly find the
velocity of motion of single large aerosol droplets in a binary gas mixture inhomogeneous in concentration.

Droplets on whose surface we have the evaporation or condensation of their constituent substance are com-
monly referred to as volatile droplets [1–3]. The diffusiophoresis of large volatile particles, i.e., particles with
Kn << 1, has been considered in [2–4], where the influence of the evaporation coefficient α of the droplet liquid on
the diffusiophoresis velocity has not been taken into account directly, which is a substantial drawback of these works.
Furthermore, it has been shown in [2, 5] that, if the viscosity of the internal region of a droplet is comparable to the
viscosity of the medium around the droplet in value, the contribution of the internal flows to the diffusiophoresis ve-
locity becomes very substantial. Therefore, it became necessary to consider the theory of diffusiophoresis of large
spherical volatile aerosol particles with direct account taken of the evaporation coefficient α of the droplet liquid with
internal flows and interphase surface tension variable along the droplet surface. By the evaporation (sticking) coeffi-
cient we mean the quantity whose value is determined as the ratio of the total radial flux of vapor molecules experi-
encing phase transition under given conditions (different from saturation) to the same flux in complete saturation of
the gas medium with vapor under the same conditions. We are dealing with the molecular flux supplied to the droplet
surface (condensation) or the molecular flux removed from the droplet surface (evaporation).

Let us consider a spherical droplet of radius R, consisting of a one-component liquid with a thermal conduc-
tivity χi and a mass of an individual molecule m1. The droplet is placed in a binary gas mixture, which is inhomo-
geneous in concentration and whose one component is the vapor of the droplet liquid. The gas mixture has a thermal
conductivity χe, a viscosity η0e, and the coefficient of mutual diffusion of the components D12

(e). At a large distance
from the droplet, we maintain constant gradients of concentrations of the components of the gas mixture (∇ C1e)∞ and
(∇ C2e)∞, where

C1e = 
n1e

ne
 ,   C2e = 

n2e

ne
 , (1)

here ne = n1e + n2e.
It is clear that C1e + C2e = 1 and

∇ C1e = − ∇ C2e (2)

at each point of the gas mixture.
The droplet radius is assumed to be so large as compared to the mean free paths of the molecules of the

components of the gas mixture λ1 and λ2 that the problem can be solved in the hydrodynamic regime [1–7]. It is as-
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sumed that the droplet retains its spherical shape in motion. This holds true if (as has been shown in [3]) the exter-
nal-pressure forces are small as compared to the pressure from surface tension, which can be expressed in the form of
the relation

σ ⁄ R >> η0e 
 U

R
 . (3)

Thus, it is assumed that the droplet retains its spherical shape in the process of motion; therefore, the problem
is conveniently solved in the spherical coordinate system r, θ, ϕ with the origin at the center of the droplet.

The polar axis Z = r cos θ will be selected along the gradient (∇ C1e)∞. We will consider the droplet to be
quiescent and the center of gravity of the external mixture to be moving relative to the center of the droplet with ve-
locity U when r → ∞ (see Fig. 1 and [8] and [3]).

The distributions of velocities, pressures, temperatures, and concentrations inside the droplet and outside is sat-
isfy the following system of differential linearized equations written in vector form [3]:

η0e∇
2
v
(e)

 = ∇ p
(e)

 , (4)

div v
(e)

 = 0 , (5)

η0i∇
2
v
(i)

 = ∇ p
(i)

 , (6)

div v
(i)

 = 0 , (7)

∇ 2
C1e = 0 , (8)

∇ 2
Ti =0 , (9)

∇ 2
Te = 0 . (10)

The boundary conditions [3, 8]

vr
(e)

 =  U  cos θ , (11)

Fig. 1. Motion of a droplet in the external medium.
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vθ
(e)

 = −  U  sin θ , (12)

p
(e)

 = p0
(e)

 , (13)

C1e = C01e + (∇ C1e)∞  r cos θ , (14)

Te = T0e (15)

hold true at a large distance from the droplet when r → ∞ (also, see Fig. 1).
On the droplet surface, we have the following boundary relations:




n02evr

(e)
 − D12

(e)
n0e

2
 
m1

ρ0e
 
∂C2e

∂r







 r=R

 = 0 , (16)




n01evr

(e)
 − D12

(e)
n0e

2
 
m2

ρ0e
 
∂C1e

∂r







 r=R

 = n0eαν (C1e
(sat)

 − C1e) r=R , (17)

vθ
(e)

 − vθ
(i) r=R = 

Kt.sl
(e)

T0eR
 
∂Te

∂θ



 r=R

 + 
Kd.slD12

(e)

R
 
∂C1e

∂θ



 r=R

 , (18)

Te r=R = Ti r=R , (19)




− χe 

∂Te

∂r
 + χi 

∂Ti

∂r







 r=R

 = − n0eανLm1 (C1e
(í)

 − C1e) r=R . (20)

The temperature Ti inside the droplet and the concentration C1e must take finite values.
Boundary condition (16) reflects the fact of impermeability of the droplet surface to the second component of

the binary gas mixture not experiencing phase transition. In this condition, the first term is equal to the radial convec-
tive flux of the second component, whereas the second term is equal to the radial diffusion flux of the same compo-
nent. Condition (17) expresses the continuity of the radial flux of the first (volatile) component through the droplet
surface. The left-hand side of relation (17) is equal to the radial flux of the first component outside the droplet; this
radial flux represents the sum of convective and diffusion fluxes. The right-hand side of relation (17) characterizes the
radial flux of the first component, which is removed from the droplet surface through the Knudsen layer and is in pro-
portion to the evaporation coefficient α of the droplet liquid. The latter flux has not been taken into account earlier in
the theory of diffusiophoresis of large volatile aerosol droplets (see [1–3]). Derivation of the expression for this flux
is based on the fact that the radial molecular flux of the droplet-liquid vapor is determined from simple statistical con-
siderations (see [9]) and is equal to the quantity n0eαν(Ce

(sat) − C1e) r=R, ν = √kT0e
 ⁄ (2πm1) .

Relation (18) expresses the existing phenomena of thermal and diffusion slips of the binary gas mixture along
the droplet surface which are in proportion to the coefficients of thermal Kt.sl

(e) and diffusion Kd.sl
(e)  slip respectively (see

[3, 8, and 10–16]).
The temperature at the droplet–gas phase boundary is continuous. Therefore, we have relation (19) for it at

the boundary. The continuity of the heat flux through the droplet surface is given by condition (20) on whose right-
hand side account is taken of the heat going into phase transition and proportional to L.
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To the boundary conditions noted above we must add the equality to zero of the radial component of the con-
vective liquid flux through the droplet surface

vr
(i)

 = 0   when   r = R (21)

and the known conditions of nonflow of the radial and tangential components of the viscous-stress tensor on the drop-
let surface [7]




− p

(e)
 + 2η0e 

∂vr
(e)

∂r







 r=R

 − 
2σ0

R
 − 2 

∂σ
r∂Ti



 Ti=T0i

 (Ti − T0i) r=R = 



− p

(i)
 + 2η0i 

∂vr
(i)

∂r







 r=R

 , (22)

η0e 




1

r
 
∂vr
(e)

∂θ
 + 
∂vθ
(e)

∂r
 − 
∂vθ
(e)

∂r







 r=R

 + 
1

r
 
∂σ
∂Ti



 Ti=T0i

∂Ti

∂θ


 r=R

= η0e





1

r
 
∂vr
(i)

∂θ
 + 
∂vθ
(i)

∂r
 − 
∂vθ
(i)

∂r







 r=R

 . (23)

The surface tension σ appearing in (22) and (23) is represented in the linear approximation of the series-expansion pa-
rameter  (R∇ C1e)∞  and can be written as follows:

σ = σ0 + 
∂σ
∂Ti



 Ti=T0i

 (Ti − T0i) . (24)

We note that the surface tension decreases with increase in the temperature, i.e., ∂σ ⁄ ∂T < 0. It will suffice to
refer to the experimental data [17] and the simplest theory in this field [18, 19].

We emphasize that all the boundary conditions (16)–(23) have been written in linearized form in the series-
expansion parameter noted and the average values of ne, n1e, n2e, ηe, ηi, and Te have been substituted instead of these
quantities on the droplet surface (see [3]).

We also note that the saturating concentration C1e
(sat) is a function of the temperature Ti and it can be ex-

panded in the series-expansion parameter  R∇ C1e  with the retention of terms linear in this parameter:

C1e
(sat)

 (Ti) r=R = C01e
(sat)

 (T0i) r=R + 
∂C1e
(sat)

∂Ti








Ti=T0i

 (Ti − T0i) r=R . (25)

The problem of gas-mixture flow about the droplet and internal flows have azimuth symmetry because of the
selection of the direction of the polar axis along the gradient (∇ C1e)∞. Therefore, the variable quantities v(e), v(i),
p(e), p(i), C1e, Te, and Ti are independent of the azimuth angle ϕ and vϕ

(e) and vϕ
(i) are equal to zero (see [1–3, 5, and

7]).
Solutions of the system of differential equations (4)–(10) in spherical coordinates [3] with account for bound-

ary conditions (11)–(15) can be represented in the form (see [3])

vr
(e)

 = 




Ae

r
3

 + 
Be

r
 +  U




 cos θ + 

γe
r

 , (26)

vθ
(e)

 = 




Ae

2r
3
 − 

Be

2r
 −  U




 sin θ , (27)
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p
(e)

 = p0
(e)

 + η0e 
Be

r
2  cos θ , (28)

C1e = C01e +  (∇ C1e) ∞ r cos θ + 
µe
(C)

r
2

 cos θ + 
ϕ(C)

r
 , (29)

Te = T0e + 
µe
(T)

r
2

 cos θ + 
ϕ(T)

r
 , (30)

vr
(e)

 = (Qi + Dir
2) cos θ + vr0

(i)
 , (31)

vθ
(i)

 = − (Qi + 2Dir
2) sin θ , (32)

p
(i)

 = p0
(i)

 + 10ηiDir
2
 sin θ , (33)

Ti = T0i + µi
(T)

 r cos θ . (34)

Next, having substituted the solutions (26)–(34) into boundary conditions (16)–(23), we obtain the system of algebraic
equations for determination of the unknown constants Ae, Be,  U , µe

(C), µe
(T), µi

(T), Qi, Di, ϕ(C), and ϕ(T) and of the
quantities vr0

(i) and C01e.
If U is the velocity of incidence of the gas-mixture flow onto the droplet, the vector of the velocity of diffu-

siophoresis of the droplet relative to the center of gravity of the gas mixture [3] will be equal to

UD = − U . (35)

Having obtained the analytical expression for  U  (after conversion to the vector notation), we will have

UD = − 
6η0i

(3η0i + 2η0e) ∆
 



Kd.sl
(e)

D12
(e)

2

 

2χe + χi + n0e ανLm1Rδ


 +

+ 







Kt.sl
(e)

T0e
 + 

R

3η0i
 δσ






 D12
(e)

n0e ανLm1R






 (∇ C1e)∞ + 

3 (η0i + 2η0e) D12
(e)

m1

(3η0i + 2η0e) ∆ρ0e
 



2χe + χi

 n0eανR

 (∇ C1e)∞ , (36)

where

∆ = 

2χe + χi

 



2D12

(e)
 + 

n02e

n0e
 ανR




 + 2D12

(e)
n0eανLm1Rδ , (37)

δ = 
∂C1e

(sat)

∂Ti








Ti=T0i

 ,   δσ = 
∂σ
∂Ti



 Ti=T0i

 . (38)

Let us consider some limiting cases of formula (36). If α → 0, we have

167



   lim
α→ 0

  UD = − 
3η0i

3η0i + η0e
 Kd.sl
(e)

D12
(e)

 (∇ C1e)∞ . (39)

Formula (39) gives the velocity of diffusiophoresis of a large nonvolatile droplet with allowance for internal flows. If
η0i >> η0e, which is quite realizable, for η0e

 ⁄ η0i → 0 from (39) we obtain

  lim  UD
α→ 0
η0e

 ⁄ η0i→ 0

 = − Kd.sl
(e)

D12
(e)

 (∇ C1e)∞ . (40)

i.e., the classical formula for the velocity of diffusiophoresis of a large nonvolatile droplet particle.
If the thermal conductivity of the droplet is χi >> χe, i.e., in the limit χe

 ⁄ χi → 0, from (36) we obtain

   lim
χe

 ⁄ χi→ 0
  UD = − 

6η0i

(3η0i + 2η0e) ∆1
 



Kd.sl
(e)

D12
(e)

2

 



1 + 

n0eανLm1Rδ
χi




 +

+ 







Kt.sl
(e)

T0e
 + 

R

3η0i
 δσ






 
D12
(e)

n0eανLm1R

χi










 (∇ C1e)∞ + 















3 (η0i + 2η0e)
3η0i + 2η0e




 
D12
(e)

m1

ρ0e∆1
 n0eανR










 (∇ C1e)∞ , (41)

where

∆1 = 



2D12

(e)
 + 

n02e

n0e
 ανR




 + 

2D12
(e)

n0eανLm1Rδ
χi

 .

Evaluations with the use of the formulas obtained have shown that the diffusiophoresis velocity UD changes
in both absolute value and direction with increase in the coefficient of evaporation α of the droplet liquid. This is
shown fairly well by the shape of the plot (Fig. 2) of the factor of proportionality Ψ between UD and (∇ C1e)∞ (UD
= Ψ(∇ C1e)∞) as a function of the evaporation coefficient of a water droplet of radius R = 10 µm, suspended in air
under normal conditions. In the case of very small α (0 < α ≤ 0.003), the velocity UD drops without changing its in-
itial direction (UD < 0). The reason is that the role of the effects of thermal and diffusion slips (caused by the nonuni-
form phase transition in motion along the droplet surface) here is dominant and the droplet moves down in the

Fig. 2. Coefficient Ψ vs. α under normal conditions.

TABLE 1. Coefficient Ψ as a Function of α of a Water Droplet (at the top, at T0e = 310 K, at the bottom, at T0e = 360 K)

α 0 0.0029 0.1 0.2 0.5 0.7 –1

Ψ⋅105 –0.74 0 5.16 5.85 6.346 6.45 6.52

α 0 0.0027 0.1 0.2 0.5 0.7 1

Ψ⋅105 –0.74 0 5.26 5.93 6.41 6.5 6.585
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concentration C1e for Kd.sl > 0. When α ≥ 0.03 the role of a purely reactive effect of evaporation and variable surface
tension (∂σ ⁄ ∂T < 0) grows and the droplet moves up in the concentration C1e.

Table 1 gives the coefficient Ψ as a function of α of the water droplet of radius R = 10 µm, which is sus-
pended in air at T0e equal to 330 and 360 K respectively and a pressure of 105 Pa.

NOTATION

Ae, constant coefficient dependent on the parameters of the mixture and the droplet, m4/sec; Be, the same,
m2/sec; C1e and C2e, dimensionless relative concentrations of the first and second components of the gas mixture re-
spectively; C01e, dimensionless average value of the relative concentration of the first component of the gas mixture;
D12
(e), coefficient of mutual diffusion of the first and second components of the gas mixture, m2/sec; Di, constant coef-

ficient dependent on the parameters of the mixture and the droplet, 1/msec; div v(e) and div v(i), dimensionless diver-
gences of the velocity of the center of inertia of the gas mixture outside the droplet and inside it; k = 1.38⋅1023,
Boltzmann constant, J/K; Kn, Knudsen number; L, specific heat of phase transition, J/K; m1 and m2, masses of the
molecules of the first and second components of the gas mixture, kg; n1e and n2e, concentrations of the molecules of
the first and second components of the external gas mixture, m−3; n01e and n02e, the same, average value, m−3; ne,
total concentration of the external gas mixture, m−3; n0e, the same, average value, m−3; p(e) and p(i), pressures outside
the droplet and inside it, Pa; p0

(e), average value of the pressure outside the droplet, Pa; Qi, constant coefficient de-
pendent on the parameters of the mixture and the droplet, m/sec; r, distance from the center of the droplet to a point
of the medium, m; R, radius of an aerosol particle, m; Te and Ti, temperature outside the droplet and inside it respec-
tively, K; T0e and T0i, the same, average values, K; UD, diffusiophoresis velocity, m/sec; U, velocity of incidence of
the gas-mixture flow onto the droplet, m/sec; v(e) and v(i), velocities of the center of inertia of the gas mixture outside
the droplet and inside it, m/sec; vr

(e) and vθ
(e), radial and tangential components of the mass velocity, m/sec; vr0

(i), aver-
age value of the radial component of the mass velocity, m/sec; (X, Y, Z), Cartesian coordinate system, m; α, dimen-
sionless coefficient of evaporation of the droplet liquid; γe, constant coefficient dependent on the parameters of the
mixture and the droplet, m2/sec; η0e and η0i, average viscosities of the gas mixture and the droplet, N⋅sec/m2; (r,
θ, ϕ), spherical coordinate system, m, rad, and rad; µe

(C), µe
(T), and µi

(T), constant coefficient dependent on the parame-
ters of the mixture and the droplet, m2, K⋅m2, and K/m2; ν, one-fourth of the average absolute thermal velocity of
vapor molecules, m/sec; Ψ, proportionality factor; ρ0e, average density of the gas mixture, kg/m3; σ, surface-tension
coefficient at the droplet–binary gas mixture boundary, N/m; σ0, the same, average value, N/m; χe and χi, thermal
conductivities of the external medium and the droplet, W/(K⋅m); ∇ C1e and ∇ C2e, concentration gradients of the first
and second components of the gas mixture respectively, m−1; (∇ C1e)∞ and (∇ C2e)∞, constant gradients of concentra-
tions of the first and second components of the gas mixture respectively, m−1; ∇ p(e), pressure gradient outside the
droplet, Pa/m; ∇ Te and ∇ Ti, dimensionless gradients of the temperature outside the droplet and inside it respectively.
Subscripts and superscripts: C, relative concentration; e, external; i, internal; T, temperature; sat, saturation; t.sl, thermal
slip; d.sl, diffusion slip.
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